A Soybean Dual-Specificity Kinase, GmSARK, and Its Arabidopsis Homolog, AtSARK, Regulate Leaf Senescence through Synergistic Actions of Auxin and Ethylene1[C][W][OA]
نویسندگان
چکیده
As the last stage of leaf development, senescence is a fine-tuned process regulated by interplays of multiple signaling pathways. We have previously identified soybean (Glycine max) SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (SARK), a leucine-rich repeat-receptor-like protein kinase from soybean, as a positive regulator of leaf senescence. Here, we report the elucidation of the molecular mechanism of GmSARK-mediated leaf senescence, especially its specific roles in senescence-inducing hormonal pathways. A glucocorticoid-inducible transcription system was used to produce transgenic Arabidopsis (Arabidopsis thaliana) plants for inducible overexpression of GmSARK, which led to early leaf senescence, chloroplast destruction, and abnormal flower morphology in Arabidopsis. Transcript analyses of the GmSARK-overexpressing seedlings revealed a multitude of changes in phytohormone synthesis and signaling, specifically the repression of cytokinin functions and the induction of auxin and ethylene pathways. Inhibition of either auxin action or ethylene biosynthesis alleviated the senescence induced by GmSARK. Consistently, mutation of either AUXIN RESISTANT1 or ETHYLENE INSENSITIVE2 completely reversed the GmSARK-induced senescence. We further identified a homolog of GmSARK with a similar expression pattern in Arabidopsis and named it AtSARK. Inducible overexpression of AtSARK caused precocious senescence and abnormal floral organ development nearly identical to the GmSARK-overexpressing plants, whereas a T-DNA insertion mutant of AtSARK showed significantly delayed senescence. A kinase assay on recombinant catalytic domains of GmSARK and AtSARK revealed that these two leucine-rich repeat-receptor-like protein kinases autophosphorylate on both serine/threonine and tyrosine residues. We inferred that the SARK-mediated pathway may be a widespread mechanism in regulating leaf senescence.
منابع مشابه
A soybean dual-specificity kinase, GmSARK, and its Arabidopsis homolog, AtSARK, regulate leaf senescence through synergistic actions of auxin and ethylene.
As the last stage of leaf development, senescence is a fine-tuned process regulated by interplays of multiple signaling pathways. We have previously identified soybean (Glycine max) SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (SARK), a leucine-rich repeat-receptor-like protein kinase from soybean, as a positive regulator of leaf senescence. Here, we report the elucidation of the molecular mechan...
متن کاملSENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE Directly Interacts with the Cytoplasmic Domain of SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE and Negatively Regulates Leaf Senescence in Arabidopsis.
Reversible protein phosphorylation mediated by protein kinases and phosphatases plays an important role in the regulation of leaf senescence. We previously reported that the leucine-rich repeat receptor-like kinase SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (AtSARK) positively regulates leaf senescence in Arabidopsis (Arabidopsis thaliana). Here, we report the involvement of a protein serine/th...
متن کاملMolecular genetic control of leaf lifespan in plants - A review
Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...
متن کاملAUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana.
In plants, both endogenous mechanisms and environmental signals regulate developmental transitions such as seed germination, induction of flowering, leaf senescence and shedding of senescent organs. Auxin response factors (ARFs) are transcription factors that mediate responses to the plant hormone auxin. We have examined Arabidopsis lines carrying T-DNA insertions in AUXIN RESPONSE FACTOR1 (ARF...
متن کاملSAUR36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis.
Small Auxin Up RNA genes (SAURs) are early auxin-responsive genes, but whether any of them are involved in leaf senescence is not known. Auxin, on the other hand, has been shown to have a role in leaf senescence. Some of the external application experiments indicated that auxin can inhibit leaf senescence, whereas other experiments indicated that auxin can promote leaf senescence. Here, we repo...
متن کامل